Tkintertoy Documentation
Release 1.6.0

Mike Callahan

Aug 07, 2023

Contents:

1 Tkintertoy 1.6 Tutorial 1
.1 Introduction e e e e e 1
1.2 TheZen of TKINtErtoy o i i i it e e e e e e e e e e e 2
1.3 A“HelloWorld” Example o . e 2
1.4 Simple Map Creation Dialog e 4
1.5 Selection Widgets o o i e e e e e e e e e e e 6
1.6 Dynamic Wid@ets o i e e e e e e e e e e e 9
1.7 Object-Oriented Dynamic Widgets i 12
1.8 Using the Collector Widget e e e e e e e 14
1.9 Using the Notebook Container oo v v v i ittt 17
1.10 Object-Oriented Style Using Inheritance 23
1.11 Dynamically Changing Widgets 0 0 i i e e e e e e e e 28
L12 Conclusion i e e e e e e e e 34
2 tkintertoy module 35
3 Tkintertoy Gallery 53
3.1 Introduction e e e e e 53
3.2 AGallery of ttWidgets L e e e e 53
3.3 ACollection of Screenshots L e e e 69
4 Indices and tables 73
Python Module Index 75
Index 77

CHAPTER 1

Tkintertoy 1.6 Tutorial

Date Aug 07,2023
Author Mike Callahan

1.1 Introduction

Tkintertoy grew out of a GIS Python (mapping) class I taught at a local college. My students knew GIS but when it
came time to put the workflows into a standalone application, they were stumped with the complexity of programming
a GUI, even with Tkinter. So I developed an easy to use GUI library based on Tkinter that made it much simpler
to code applications. After several trials, the result was Tkintertoy which is easy to use, but also can be create more
complex GUIs. I have been teaching a Python class in a local vocational technical college using Tkintertoy with great
success.

With this version, I have fixed a few minor bugs, improved the documentation, improved the operation of the library,
and cleaned up the code for version 1.6. Support for Python 2 was removed since the library is no longer tested using
Python 2.

Tkintertoy creates Windows which contain widgets. Almost every tk or #tk widget is supported and a few combined
widgets are included. Most widgets are contained in a Frame which can act as a prompt to the user. The widgets
are referenced by string fags which are used to access the widget, its contents, and its containing Frame. All this
information is in the content dictionary of the Window. The fact that the programmer does not need to keep track
of every widget makes interfaces much simpler to write, one only needs to pass the window. Since the widgets are
multipart, I call them ttWidgets.

Tkintertoy makes it easy to create groups of widgets like radio buttons, check boxes, and control buttons. These
groups are referenced by a single tag but individual widgets can be accessed through an index number. While the
novice programmer does not need to be concerned with details of creating and assigning a tk/ttk widget, the more
advanced programmer can access all the tk/ttk options and methods of the widgets. Tkintertoy makes sure that all
aspects of tk/ttk are exposed when the programmer needs them. Tkintertoy is light-weight wrapper of Tkinter and can
be used a gentle introduction to the complete library.

Tkintertoy Documentation, Release 1.6.0

1.2 The Zen of Tkintertoy

1. It must be very simple to use. Not much more complicated than input or print.
It must produce well-balanced and clean, if simple, interfaces.

It must be very light-weight and easy to install. Everything is basically in one file, tt.py.

Ll

student can easily move into more complex Tkinter.

It must be based on Tkinter. Tkinter is still the default Gui library for Python. After working in Tkintertoy, the

5. The source code should be easy to follow.

In the following examples below, one can see how the ideas in Tkintertoy can be used to create simple but useful GUISs.
GUI programming can be fun, which puts the “toy” in Tkintertoy.

1.3 A “Hello World” Example

Let’s look at a bare bones example of a complete GUI using imparative style. Imparative code are sometimes called
scripts since their structure is simple. More complex code are ususally called applications.

This GUI will ask for the user’s name and use it in a welcome message. This example uses these widgets: ttEntry,

ttLabel, and ttButtonbox.

In relating this application to a command-line application, the entry replaces the input function, the label replaces
the print function, and the buttonbox replaces the Enter key. Below is the code followed by an explanation of every

line:
1 | from tkintertoy import Window
2 |gul = Window ()
3 |guil.setTitle('My First Tkintertoy GUI!')
4 |gui.addEntry('name', 'Type in your name')
5 |gui.addLabel ('welcome', 'Welcome message')
6 |gui.addButton ('commands')
7 |gui.plotxy('name', 0, 0)
8 |gui.plotxy('welcome', 0, 1)
9 |gui.plotxy('commands', 0, 2, pady=10)
10 |while True:
1 gui.waitforUser ()
12 if gui.content:
13 gui.set ('welcome', 'Welcome ' + gui.get ('name'))
14 else:
15 break

Here is a screen shot of the resulting GUI:

[My First Tkintertoy GUI! (] (E0: It |

Type in your name
Mike
Welcome message
Welcome Mike

Ok | [Cancel

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

Here is an explanation of what each line does:

1.
2.

10.
11.

12.

Import the Window code which is the foundation of Tkintertoy.

Create an instance of a Window object assigned to gui. This will initialize Tk, create a Toplevel window,
create an application Frame, and create a content dictionary which will hold all the widgets.

. Change the title of gui to “My First Tkintertoy GUI!”. If you don’t do this, the title of the Window will default

to “Tk”. If you want no title, make the argument ‘’ (a null string) or None.

. Add an ttEntry widget to gui. This will be the combination of a ttk.Entry in a ttk.LabelFrame. We are going to

tag it with ‘name’ since that is what we going to collect there. However, the tag can be any string. All Tkintertoy
widgets must have a unique tag which acts as the key for the widget in the content dictionary. However, most
of the time the programmer does not access the content dictionary directly, Tkintertoy provides methods for
this. The title of the Frame surrounding the Entry widget will be ‘Type in your name’. Entry frame titles are a
great place to put instructions to your user. If you don’t want a title, just leave off this argument. Tkintertoy will
use a plain ttk/tk.Frame instead. The default width of the Entry widget is 20 characters, but this, like many other
options can be changed.

. Add a ttLabel widget to gui. This will be the combination of a ttk.Label in a ttk.LabelFrame. This tag will be

‘welcome’ since this where the welcome message will appear. Labels are a good widget for one line information
to appear that the user cannot edit. The explanation to the user of the type of information displayed in the ttLabel
is displayed in the LabelFrame, just like in the ttEntry

. Add a ttButtonbox row with a tag of ‘commands’. It defaults to two ttk.Buttons, labeled ‘Ok’ and ‘Cancel’

contained in a unlabeled ttk.Frame. Each button is connected to a function or method, called a “callback” which
will execute when the user clicks on that button. The default callback for the ‘Ok’ button is the breakout
method which exits the GUI processing loop but keeps displaying the window. This will be explained below.
The ‘Cancel’ button callback is the cancel method which exits the loop, removes the window, and empties the
content dictionary. Of course, the button labels and these actions can be easily modified by the programmer,
but by providing a default pair of buttons and callbacks, even a novice programmer can create a working GUI
application quickly. No callback programming is necessary.

. Place the ‘name’ ttwidget at column O (first column), row O (first row) of gui centered. The second argument is

the column (x dimension counting from zero) and the third argument is the row (y dimension). Both these value
default to O but it is a good idea to always include them. The plotxy method is basically the tk grid method
with the column and row keywords arguments specified. All other keyword arguments to grid can be used
in plotxy. Plot was selected as a better word for a novice. However, grid will also work. Until a widget
is plotted, it will not appear. However, the gui window is automatically plotted. Actually, you are plotting
the ttk.LabelFrame, the ttk.Entry widget is automatically plotting in the Frame filling up the entire frame using
sticky="nswe’.

. Place the ‘welcome’ widget at column 0, row 1 (second row) of gui centered. There is a 3 pixel default vertical

spacing between widget rows.

. Place the ‘command’ widget at column 0, row 2 of gui centered with a vertical spacing of 10 pixels with

pady=10.
Begin an infinite loop.

Wait for the user to press click on a button. The wait forUser method is a synonym for the tk mainloop
method. Again, the name was changed to help a novice programmer. However, mainloop will also work. This
method starts the event processing loop and is the heart of all GUIs. It handles all key presses and mouse clicks.
Nothing will happen until this method is running. This loop will continue until the user clicks on the either the
‘Ok’ or ‘Cancel’ button. Clicking on close window system widget will have the same action as clicking on the
‘Cancel’ button. This action is built-in to all Tkintertoy windows.

To get to this line of code, the user clicked on a button. Test to see if the content dictionary contains anything.
If it does, the user clicked on the ‘Ok’ button. Otherwise, the user clicked on the ‘Cancel’ button.

1.3. A “Hello World” Example 3

Tkintertoy Documentation, Release 1.6.0

13.

14.

15.

To get to this line of code, the user clicked on the ‘Ok’ button. Collect the contents of ‘name’ and add it to the
“Welcome” string in ‘welcome’. This shows how easy it is to get and set the contents of a widget using the given
methods. To get the value of a widget call the get method. To change the value of any widget call the set
method. The type of widget does not matter, get and set work for all widgets. Since all widgets are contained
in the content directory of gui, the programmer does not need to keep track of individual widgets, only their
containing frames or windows. Again, the usually programmer does not access content directly, they should
use get and set methods.

This line of code is reached only if the user clicked on ‘Cancel” which emptied the content directory. In this
case, the user is finished with the application.

Break the infinite loop and exit the program. Notice the difference between the infinite application loop set up
by the while statement and the event processing loop set up by the wait forUser method. Also, note that
when the user clicked on ‘Cancel’, the tkintertoy code exited, but the Python code that called tkintertoy was still
running. This is why you must break out of infinite loop.

So you can see, with 15 lines of code, Tkintertoy gives you a complete GUI driven application, which will run on any
platform Tkinter runs on with little concern of the particular host. Most Tkintertoy code is cross platform.

1.4 Simple Map Creation Dialog

Below is the code to create a simple dialog window which might be useful for a GIS tool which creates a map. This
example was also written in imparative style in order to help the typical GIS or novice Python script writer. Procedure
and object-oriented style coding will be demonstrated later.

We will need the filename of the input CSV file, the output PNG map image, and the title for the map. We will use the
following widgets: ttOpen, ttSaveAs, ttEntry, and ttText as a status window.

We want the layout for the dialog to look like this:

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

7% Create a Map

Input C5V filename

c:/gis/rain.csv

Cutput PNG filename

Browse

= [B) |

c:/gis/rain.png

Map Title
Teday's Rainfall

Status:
Converting c:/gis/rain.csv into c:/gis_rain.png.. | it

| ok || cancel

L =

Here is the code (we will not worry not the code that actually creates the map!):

1 | from tkintertoy import Window

2 |gui = Window ()

3 |gui.setTitle('Create a Map')

4 |csv = [('CSV files', ('x.csv'))]

s |gui.addOpen('input', 'Input CSV filename',

¢ |png = [('PNG files', ('x.png'))]

7 | gui.addSaveAs ('output', 'Output PNG filename',
8 |gui.addEntry ('title', 'Map Title', width=40)

9 |gui.addText ('status', width=40, height=5,

10 |gui.addButton ('commands')

n |gui.plotxy('input', 0, 0, pady=10)

2 |gui.plotxy('output', 0, 1, pady=10)

13 |gui.plotxy('title', 0, 2, pady=10)

4 |gui.plotxy('status', 0, 3, pady=10)

15 |gui.plotxy('commands', 0, 4, pady=20)

16 |gui.waitforUser ()

17 |1f gui.content:

18 message = f"Converting {gui.get ('input') }
19 gui.set ('status', message)

20 gui.master.after (5000) # pause 5 seconds
21 # magic map making code goes here...

2 gui.cancel ()

width=40,

prompt="'Status:"')

into

filetypes=csv)

width=40, filetypes=png)

{gui.get ('output') }...\n"

Each line of code is explained below:
1. Import the Window object from tkintertoy.

2. Create an instance of a Window and label it gui.

1.4. Simple Map Creation Dialog

Tkintertoy Documentation, Release 1.6.0

10.
11.
12.

13.
14.
15.

16.

17.
18.
19.
20.
21.
22.

Set the title gui to “Create a Map”.

We want to limit the input files to .csv only. This list will be used in the method in the next line. Notice, you can
filter multiple types.

Add an ttOpen dialog widget. This is a combination of a ttk.Entry widget, a ‘Browse’ ttk. Button, and a
ttk.LabelFrame. If the user clicks on the ‘Browse’ button, they will see a directory limited to CSV files. To
allow the user to see the entire path, we changed the width of the entry to 40 characters.

We want to limit our output to .png only.

Add a ttSaveAs dialog widget. This is a combination of a ttk.Entry widget, a ‘Browse’ ttk. Button, and a
ttk.LabelFrame. If the user clicks on the ‘Browse’ button, they will see a directory limited to PNG files. If the
file already exists, an overwrite confirmation dialog will pop up.

Add an ttEntry widget that is 40 characters wide to collect the map title.

Add a ttText widget, which is a combination of a ttk.Text widget, a vertical ttk.Scrollbar, and a ttk.LabelFrame.
It will have a width of 40 characters, a height of 5 lines, and will be used for all status messages. The ttText
widget is extremelly useful for many different purposes.

Add a ttButtonbox with the default ‘Ok’ and ‘Cancel’ buttons.
Plot the ‘input’” widget at column 0, row 0, vertically separating widgets by 10 pixels.

Plot the ‘output’ widget at column 0, row 1, vertically separating widgets by 10 pixels. Notice this will cause a
20 pixel separation between the input and output widgets.

Plot the ‘title’ widget at column 0, row 2, vertically separating widgets by 10 pixels.
Plot the ‘status’ widget at column 0, row 3, vertically separating widgets by 10 pixels.

Plot the ‘commands’ widget at column 0, row 4, vertically separating widgets by 20 pixels. This will be 30
pixels from the status widget.

Enter the event processing loop and exit when the user clicks on a button. This script will execute once so there
is no need for an infinte loop.

If the user clicked on the OK button do the following:

Create the status message.

Display the status message.

Pretend we are making a map but in reality just pause for 5 seconds so the user can see the status message.
This is where the actual map making code would begin.

Exit the program.

Notice, if the user clicks on the Cancel button, the program exits at line 17.

1.5 Selection Widgets

Many times you want to limit the user to a fixed set of options. This next example demonstrates widgets that are
useful for this task. We will create a hamburger ordering application which will use three type of selection widgets:
ttRadiobox, ttCheckbox, and ttListbox. We will stay with imparative style programming.

Radiobox widgets are great for showing the user an list of dependent options. Only one option in the group can be
selected at a time. The name “radiobutton” comes from old-fashioned car radio tuner buttons, when you pushed one
to change a station, the previous one selected poped-up.

Checkboxes allow the user to select many independent options at a time. Listboxes can be programmed to do both.

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

We will use a radiobox to select whether the user want a single, double, or a triple burger. We will use a listbox to

indicate which toppings the user wants, and a checkbox to indicate the desired condiments.

Below is a screenshot of the application:

{ Order a Hamburger

~Select Toppings————
Cheese &
Condiments
B Ketchu
Type of Hamburger
] Single QO Double () Triple Relish
v
Order Up

A Double hamburger - with: Lettuce, Onions, Pickles, Tomato
- add: Ketchup, Mayonaise

Ok Cancel

Here is the code:

1 |from tkintertoy import Window

2> |app = Window ()

3 |app.setTitle ('Order a Hamburger')

4 |burgerType = ['Single', 'Double', 'Triple']

5 |app.addRadio('type', 'Type of Hamburger', burgerType)

¢ |toppings = ['Cheese', 'Lettuce', 'Onions', 'Pickles', 'Tomato',

'Relish']

7 |app.addList ('toppings', 'Select Toppings', toppings, selectmode='multiple')

s | condiments = ['Ketchup', 'Mayonaise', 'Mustard', 'BBQ']

9 |app.addCheck ('condiments', 'Condiments', condiments, orient='vertical')

10 |app.addText ('order', 'Order Up', height=5)
11 app.addButton ('commands ")
1 |app.plotxy('type', 0, 0)
13 |app.plotxy('toppings', 1, 0)

4 |app.plotxy ('condiments', 2, 0)

15 |app.plotxy('order', 0, 1, columnspan=3)

16 |app.plotxy('commands', 0, 2, columnspan=3, pady=10)

18 |while True:

19 app.waitforUser ()

20 if app.content:

21 btype = app.get ('type')

2 toppings = app.get ('toppings')

23 condiments = app.get ('condiments')

24 app.set ('order', f£'A [btype) hamburger', allValues=True)
25 if toppings:

26 app.set ('order', ' - with: ")

27 tops = ', '.Jjoin(toppings)

(continues on next page)

1.5. Selection Widgets

Tkintertoy Documentation, Release 1.6.0

28

29

30

31

32

33

34

35

36

37

38

39

40

A

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

(continued from previous page)

app.set ('order', f' tops/\n")
else:

app.set ('order', ' - plain\n'")
if condiments:

app.set ('order', ' - add: ")

conds = ', '.join(condiments)

app.set ('order', f' conds /\n'")

app.reset ('type')

app.reset ('toppings')

app.reset ('condiments')
else:

break

Import the Window object from tkintertoy.
Create an instance of a Window and label it app.
Set the title app to “Order a Hamburger”.

Create a list of burger types.

Add a ttRadiobox which is a list of three ttk.Radiobuttons labeled with the type of burgers. These will be
referenced with a single tag, ‘type’. If we want to reference a single Radiobutton, we will use an index; [0], [1],
or [2].

Create a list of burger toppings.

Add a ttListbox which is a tk.Listbox with a vertical tk.Scrollbar. The elements are the items in the list of
toppings. Notice that selectmode="multiple’ so the user will be able to select multiple toppings without pressing
the control or shift keys. This is a good example of when a listbox is useful for multiple options. While it
does take up screen space, it makes it easy to select many multiple options but restricts the user to a fixed set of
options.

Create a list of condiments.

Create a ttCheckbox which is a list of three ttk.Checkbuttons labeled with the condiments. The orientation will
be vertical. This is another widget where the user can select multiple options. It is best used with a small number
of options.

Add a ttText with a height of 5. This is where the order will appear. Note that the width of the text widget
determines the width of the entire application.

Add a ttButtonbox with the default ‘Ok’ and ‘Cancel’ buttons.

Plot the ‘type’ widget at column 0, row 0.

Plot the ‘toppings’ widget at column 1, row 0.

Plot the ‘condiments’ widget at column 2, row 0.

Plot the ‘order’ widget at column O, row 1, strectched across three columns with colunmspan=3.
Plot the ‘commands’ widget at column 0, row 2, also stretched across three columns.

Blank line

Begin a infinite loop.

Enter the event processing loop and exit when the user clicks on a button.

If the user clicked on the OK button do the following:

Get the burger type.

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

22. Get the selected toppings list.

23. Get the selected condiments list.

24. Start the order message. The allValue=True clears the text widget of any previous orders.
25. If the user selected any toppings. . .

26. Add the toppings phrase in the ‘orders’ widget.

27. Create a string containing the selected toppings separated by a comma.

28. Add it to the ‘orders’ widget.

29. If the user selected no toppings. ..

30. Mark the burger as plain.

31. If the user selected any condiments. ..

32. Add the condiments phrase.

33. Create a string containing the selected condiments separated by a comma.

34. Add it to the order.

35. Reset the ‘type’ widget.

36. Reset the ‘toppings’ widget.

37. Reset the ‘condiments’ widget and loop back to 19.

38. If the user clicked on the ‘Cancel’ button...

39. Break the infinate loop. The Tkintertoy application was automatically canceled.

This is a example showed some of the selection widgets that are available in Tkintertoy. The best one to use is up to
the programmer’s discretion. As you can see, this code is getting too long for imparative style. We will use procedure
style in the next example.

1.6 Dynamic Widgets

A very useful technique is to create a widget which is dependent on the contents of another widget. The code below
shows a ttCombobox which is dependent on a ttRadiobox row.

The trick to have the contents of a combobox be dependent on a radiobox, is to create a combo widget and then
create a callback function which looks at the contents of the radiobox and then sets the item list attribute of the combo
widget. This time we will use procedure style code which is a more advanced style but still accessable to the novice
programmer. We will also do a better job in adding comments to the code.

Here is the screenshot:

1.6. Dynamic Widgets 9

Tkintertoy Documentation, Release 1.6.0

Z¢ Dynami... E@lﬂ

p—

Itemn Types

@ Trees () Birds (O Flowers

Items

B

Maple
|L_Beech l
The callback function will have to know the widget that called it which is included when the Window is passes as

an argument, which will lead to some strange looking code. This complexity can be eliminated by writing in an
object-oriented fashion, which will be covered in the next example.

b

Below is the code:

1 | from tkintertoy import Window

3 |def update(gui): # callback function

4 "mroset the alist attribute by what is in the radio button box """
5 lookup = {'Trees':['Oak',6 "Maple', "Beech'],

6 'Birds':['Cardinal', '"Robin', 'Sparrow'],

7 'Flowers':['Rose', 'Petunia', 'Daylily']}

8 select = gui.get ('category')

9 gui.set ('items', lookup[select], allValues=True)

10 gui.set ('items', '...")

2 |def main() :

13 """ main driving function """

14 categories = ['Trees', 'Birds', '"Flowers']

15 gui = Window ()

16 gui.setTitle ('Dynamic Widget Demo')

17 guil.addRadio ('category', 'Item Types', categories)
18 gui.addCombo ('items', 'Items', None, postcommand=(lambda : update(gui)))
19 gui.addButton ('command")

20 gui.set ('items', "...")

21 gui.plotxy('category', 0, 0)

2 gui.plotxy('items', 0, 1, pady=20)

23 gui.plotxy('command', 0, 2)

24 gul.waitforUser ()

25 if gui.content:

2 selected = gui.get ('category')

27 item = gui.get('items")

28 # more code would go here...

29 gui.cancel ()

30

31 |main ()

Below explains every line:
1. Import Window from tkintertoy.
2. Blank line.
3. Define the callback function, update. It will have a single parameter, the calling Window.

4. This is the function documentation string. It is a great idea to have a documentation string for every function

10 Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

10.

and method. Since we are using the triple quote our comment can exceed a single line.

. These next three lines define the lookup dictionary.

Same

. Same

. Get the category the user clicked on. This shows an advantage of Tkintertoy’s content directory. All widgets are

included in the window. The programmer does not have to pass individual widgets.

. Using this category as a key, set all the values in the ttCombobox widget list to the list returned. by the lookup

dictionary, rather than the entry widget. This is why allValues=True.

Change the entry value of ‘items’ to *..." which is why allValues=False. This will overwrite any selection the
user had made. The allValues option has different effects depending on the widget type.

11. Blank line.

12. Create the main function, main. It will have no parameters. Most Python applications have a main driving
function.

13. The documentation line for main

14. Create the three categories.

15. Create an instance of Window assigned to gui.

16. Set the title for gui.

17. Add a ttRadiobox box using the categories.

18. Add a ttCombobox widget. This is a combination of a ttk.Combobox contained in a ttk.LabelFrame. This
widget will update its items list whenever the user clicks on a radiobox button. This is an example of using
the postcommand option for the combobox. Normally, postcommand would be assigned to a single method or
function name. However, we need to include gui as an parameter. This is why 1ambda is there. Do not fear
lambda. Just think of it as a special de f command that defines a function in place.

19. Add a ttButtonbox with the default ‘Ok’ and ‘Cancel’ buttons.

20. Initialize the items widget entry widget to just three dots. This lets the user know there are selections available
in the pulldown.

21. Plot the category widget at column 0, row 0.

22. Plot the items widget at column 0, row 1.

23. Plot the command buttons at column 0, row 2.

24. Start the event processing loop and wait for the user to click on a button. Notice that as the user clicks on a
category button, the list in the items combobox changes and the event loop keeps running. We do not need an
infinite loop.

25. If the user clicked on ‘Ok’ by seeing if content is not empty.

26. Retrieve the value of the category widget using the get method.

27. Retrieve the value of the items widget that was selected or typed in.

28. This where the actual processing code would start.

29. Exit the program. Calling cancel is the same as clicking on the Cancel button.

30. Blank line.

31. Call main. Even though we defined main above, Python will not execute the function until we call it.

1.6. Dynamic Widgets 11

Tkintertoy Documentation, Release 1.6.0

1.7 Object-Oriented Dynamic Widgets

While I told you to not fear lambda, if you write code in an object-oriented mode, you don’t have to be concerned about
lambda. One can write complex guis in Tkintertoy without object-oriented style, which might be better for novice
programmers, but most guis should be oject-oriented once the programmer is ready. While, the details of writing
object-oriented code is far beyond the scope of this tutorial, we will look at the previous example in an object-oriented
mode using composition. You will see, it is not really complicated at all, just a little different. The GUI design did not
change.

Below is the new code:

i | from tkintertoy import Window

3 |def update(gui): # callback function

4 "m"r o set the alist attribute by what is in the radio button box """
5 lookup = {'Trees':['Oak',6 "Maple', 'Beech'],

6 'Birds':['Cardinal', '"Robin', 'Sparrow'],

7 'Flowers':['Rose', 'Petunia', 'Daylily']}

8 select = gui.get('category')

9 gui.set ('items', lookupl[select], allValues=True)

10 gui.set ('items', '...")

2 |def main() :

13 """ main driving function """

14 categories = ['Trees', 'Birds', 'Flowers']

15 gui = Window ()

16 gui.setTitle ('Dynamic Widget Demo')

17 gui.addRadio('category', 'Item Types', categories)
18 gui.addCombo ('items', 'Items', None, postcommand=(lambda : update(gui)))
19 gui.addButton ('command")

20 gui.set ('items', "...")

21 gui.plotxy ('category', 0, 0)

2 gui.plotxy('items', 0, 1, pady=20)

23 gui.plotxy ('command', 0, 2)

24 gui.waitforUser ()

25 if gui.content:

26 selected = gui.get ('category')

27 item = gui.get('items"')

28 # more code would go here...

29 gui.cancel ()

30
31 |main ()

And the line explanations:
1. Import Window from tkintertoy.
2. Blank line.

3. Create a class called Gui. This will contain all the code dealing with the interface. We are not inheriting from
a parent class in this example. We will see how to do this in another example below.

4. This is a class documentation string. It is a great idea to document all classes, too.
5. Blank line.

6. Create an initialize method that will create the interface, called __init__. This strange name is required.
Methods names that begin and end with double underscore are special in Python.

7. This is the method documentation string.

12 Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

Create the three categories.

Create an instance of Window assigned to self.gui. The self means gui is an attribute of the instance and
all methods in the class will have access to self.gui.

Set the title for self.gui.
Add a ttRadiobox using the categories.

Add a ttCombobox widget which will update its items list whenever the user clicks on a radiobox button. Notice
that the postcommand option now simply points to the callback method without 1ambda since ALL methods
can access self.gui. This is the major advantage to object-oriented code. It reduces argument passing.

Add a ttButtonbox with the default ‘Ok’ and ‘Cancel’ buttons.
Initialize the items widget.

Plot the category widget at column 0, row 0.

Plot the items widget at column 0, row 1.

Plot the command buttons at column 0, row 2.

Blank line.

Create the callback method using the self parameter.
This is the method documentation string.

These next three lines define the lookup dictionary.
Same

Same

Get the category the user clicked on.

Using this category as a key, set all the items in the combobox widget list to the list returned by the lookup
dictionary, rather than the entry widget, which is why allValues=True.

Clear the items widget.

Blank line.

Create the main driving function.
Main documentation string.

Create an instance of the Gui class labeled app. Notice that app . gui will refer to the Window created in the
__init__ method and app.gui.content will have the contents of the window.

Start the event processing loop and wait for the user to click on a button.
If the user clicked on Ok. ..

Retrieve the value of the category.

Retrieve the value of the entry part of the combobox.

This where the actual processing code would start.

Blank line.

Call main.

Notice if the user clicks on ‘Cancel’ there is no more code to execute.

There are very good reasons for learning this style of programming. It should be used for all except the simplest GUISs.
You will quickly get use to typing “self.” All future examples in this tutorial will use object-oriented style of coding.

1.7. Object-Oriented Dynamic Widgets 13

Tkintertoy Documentation, Release 1.6.0

1.8 Using the Collector Widget

This next example is the interface to a tornado path generator. Assume that we have a database that has tornado paths
stored by date, counties that the tornado moved through, and the maximum damaged caused by the tornado (called the
Enhanced Fajita or EF scale).

This will demonstrate the use of the ttCollector widget, which is a combination of a ttk.Treeview, and two ttk.Buttons.
It acts as a dialog inside a dialog. Below is the screenshot:

¥ Tornado Path Generator

Date of Tornadao
403 = 2010 =

Affected County
|Floyd v

Maxirnurmn EF Damage

() EFD O EF1 @ EF2 O EF3 (O EF4 () EF5

Included Tornadoes

Date County Damage
4/372010 Clark EF2
4/372010 Floyd EF2
Add
Delete
Ok Cancel

You can see for the date we will use a ttSpinbox. A ttSpinbox is a group of tk/ttk.spinboxes that are limited to
integers, separated by a string, and contained in a tk/ttk.Frame. This is a excellent widget for dates, times, social
security numbers, etc. The get method will return s string with the values of each box, with the separtor in between.
The set method also requires the separtor in the string.

The county will be a ttCombobox widget, the damage will use ttCheckbox and all choices will be shown in the
ttCollector widget. Here is the code:

from tkintertoy import Window

class Gui (object) :
""" The Tornado Path Plotting GUI """

[T S

def @ init__ (self):

(continues on next page)

14 Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

(continued from previous page)

mwn mwn

create the GUI
counties =

'Orange', '"Perry', 'Scott’
damage = ['EFO','EF1','EF2"',
dateParms =
initDate =
cols = 'Date’,
self.gui = Window ()
self.
self.
self.
self.

'1/1/1980"

i .addSpin ('tdate",
i .set ('tdate',
i .addCombo ('county"',
self. i .addRadio ('level',
self.qgui.
—'Included Tornadoes',
height=10)
self.gui.addButton ('command'
self.gui.plotxy('tdate', 0O,
self.gui.plotxy('county', O,
self.gui.plotxy('level', O,
self.gui.plotxy('paths', 0,
self.guil.plotxy ('command',

def main () :
""" the driving function
app = Gui()
app.gui.waitforUser ()
if app.gui.content:
data = app.gui.get ('paths',
print (data)

mmn

magic tornado path generation code

app.gui.cancel ()

main ()

['Clark', 'Crawford', 'Dubois', 'Floyd', 'Harrison', 'Jefferson

[12,1,12]1,12,1,12],[5,1900,21007]]
100], ['County"',
i .setTitle ('Tornado Path Generator')
dateParms,

initDate)

'Maximum EF Damage',
addCollector ('paths',

OI

, '"Washigton']
'"EF3','EF4', 'EF5']

100], ['Damage', 10071

'/', 'Date of Tornado')
counties)

damage)
['tdate', 'county', 'level'],

'Affected County',

cols,

)
0, pady=b5)
pady=5)
2, pady=5)

3, pady=b5)

4, pady=10)

I4
1,

allvValues=True)

Here are the line explanations, notice the first steps are very similar to the previous example:

1.

10.
11.

12.

Import Window from tkintertoy.

. Blank line.

. This is a class documentation string.

2
3
4
5.
6
7
8
9

Blank line.

. This is the method documentation string.
. Create a list of county names.

. Same

Create a list of damage levels.

. Create a class called Gui. This will contain all the code dealing with the interface.

. Create an initialize method that will create the interface. All methods in the class will have access to self.

Create the parameter list for the date spinner. The first digit is the width in characters, the second is the lower

limit, the third is the upper limit.
The initial date will be 1/1/1980.

1.8.

Using the Collector Widget

15

Tkintertoy Documentation, Release 1.6.0

13.

14.

15.
16.

17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

Set up the column headers for the ttCollector widget. The first value is the the header string, the second is the
width of the column in pixels.

Create an instance of Window labeled self.gui. Again, the self means that every method in the class will
have access. Notice, there are no other methods in this class so making gui an attribute of self is unnecessary.
However, it does no harm, other programmers expect it, and future methods can be added easily.

Set the title of self.gui to “Tornado Path Generator”.

Add a date ttSpinbox. This is a combination of 3 ttk.Spinboxes seperated by a slash (/) contained in a
ttk.LabelFrame. It will be labeled ‘tdate’ in order to not cause any confusion with a common date library.

Set the ‘tdate’ to the default. Notice to set and value of a spinbox you use a string with seperators.
Add a county ttCombobox.
Add a damage level ttCheckbox.

Add a ttCollector. The collector has a tag, the column header list from line 13, a list of the widget tags it needs
to collect, and the propmt. It also includes two buttons, ‘Add’ and ‘Delete’. Clicking on ‘Add” will collect
the values in the widgets and add them in a line in the treeview. Clicking on ‘Delete’ will delete the currently
selected line in the treeview.

Same.

Add a ttButtonbox with the default ‘Ok’ and ‘Cancel’ buttons.

Plot the ‘tdate’ widget at column 0, row, 0, separating the widgets by 5 pixels.

Plot the ‘county’ widget at column 0, row 1, separating the widgets by 5 pixels.
Plot the ‘damage’ level widget at column 0, row 2, separating the widgets by 5 pixels.
Plot the ‘path’ widget at column 0, row 3, separating the widgets by 5 pixels.

Plot the ‘command’ widget at column 0, row 4, separating the widgets by 10 pixels.
Blank line.

Create a main function.

This is the function documentation.

Create an instance of the Gui class which will create the GUI

Start the event processing loop

If the user clicked on ‘Ok’...

Get all the lines in the collector as a list of lists.

This is where the tornado path generation code would begin but we are just going to print the data in a pop-up
information window. The example gives [[‘4/3/2010°, ‘Clark’, ‘EF2’], [‘4/3/2010’, ‘Floyd’, ‘EF2’]].

Call the driving function.

When you click on ‘Add’, the current selections in ‘tdate’, ‘counties’, and ‘level’ will be added into the collector
widget in a row. If you select a row and click on ‘Delete’, it will be removed. Thus the collector acts as a GUI inside
of a GUI, being fed by other widgets. If this was a real application, we would generate a tornado path map of the EF-2
tornadoes that moved through Clark and Floyd counties on April 4, 2010.

16

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

1.9 Using the Notebook Container

Tkintertoy includes containers which are Windows within Windows in order to organize widgets. A very useful
one is the ttNotebook which is a ttk.Notebook. This example shows a notebook that combines two different map
making methods into a single GUI. This will use the following widgets: ttEntry, ttCheckbox, ttText, ttSpinbox, and

ttButtonbox. The style of code will stay with composition.

Below is a screenshot:

¢ Mappe [=&@]=
Routine Accumulate
Map Title
24 Hour Precipitation Ending 7 AM March 04, 2019 |
Qutput Filename
‘p:anSOdZmE.png
Jobs
Make KMLs [] Make Maps

Messages
Making pcpn03042019.png
Making accum0303-03042019.png.

Ok Exit

Routine Accumulate
Ending Date
3 2/l4 £/f2004
Days back
2 3
Title
(2 Day Precipitation Total Ending March 04, 2013

o [®@]=

Output Filename

accum0303-03042019.png

Messages

Making pcpn03042019 png.
Making accum0303-03042019.png.

Ok Exit

Here is the code. We will also demonstrate to the set and get the contents of more widgets and introduce some simple

error trapping:

1 |import datetime
2 |from tkintertoy import Window

4+ |class Gui:

'.format (self.

5 """ the GUI for the script """

6 def init__ (self):

7 "mn o create the interface """

8 self.dialog = Window ()

9 self.dialog.setTitle ('Mapper 1.0")

10 # notebook

11 tabs = ['Routine', 'Accumulate']

12 pages = self.dialog.addNotebook ('notebook', tabs)

13 # routine page

14 self.routine = pages|[0]

15 today = datetime.date.today ()

16 self.dt = today.strftime('?5d,%m, %Y, %B") .split (', ")

17 self.routine.addEntry ('title', 'Map Title', width=60)

18 self.routine.set ('title', '24 Hour Precipitation Ending 7 AM
~A{0[0]}, {(0[2]}".format (

19 self.dt))

20 self.routine.plotxy('title', 0, 0)

21 self.routine.addEntry ('outfile', 'Output Filename', width=40)

2 self.routine.set ('outfile', 'pcpn{O0[1]}{0[0]}{0[2]}.png
—dt))

23 self.routine.plotxy('outfile', 0, 1)

24 jobs = ['Make KMLs', 'Make Maps']

(continues on next page)

1.9. Using the Notebook Container

17

Tkintertoy Documentation, Release 1.6.0

(continued from previous page)

25 self.routine.addCheck ('jobs', '"Jobs', jobs)
26 self.routine.set (' jobs', jobs)

27 self.routine.plotxy('jobs', 0, 2)

28 # accum pcpn page

29 self.accum = pages|[1l]

30 parms = [[3, 1, 1231, [3, 1, 311, [5, 2000,
31 self.accum.addSpin ('endbate', parms, '/', '

k) command=self.updateAccum)

33 self.accum.set ('endbhate',

34 self.accum.plotxy('endbate', 0, 0)

35 self.accum.addSpin('daysBack', [[2, 1, 45]], '', 'Days back',
36 command=self.updateAccum)

37 self.accum.set ('daysBack', '2")

38 self.accum.plotxy('daysBack', 0, 1)

39 self.accum.addEntry ('title', 'Title', width=60)

40 self.accum.plotxy('title', 0, 2)

41 self.accum.addEntry ('outfile', 'Output Filename', width=40)

4 self.accum.plotxy('outfile', 0, 3)

13 self.updateAccum/()

44 # dialog

4s self.dialog.addText ('messages', 'Messages', width=70, height=15)
46 self.dialog.plotxy('messages', 0, 1)

47 self.dialog.addButton ('commands', space=20)

48 self.dialog.setWidget ('commands', 0, command=self.go)

49 self.dialog.setWidget ('commands', 1, text='Exit')

50 self.dialog.plotxy('commands', 0, 2)

51 self.dialog.plotxy ('notebook', 0, 0)

52 self.dialog.set ('notebook', 'Routine')

53

54 def updateAccum(self):

"rroupdate widgets on accum page

mmn
55

56 end = [int (i) for i in self.accum.get ('endDate').split('/")]

57 endDate = datetime.date(end[2], end[0], end[1])

58 endDateFmt = endDate.strftime('?%d,%m, %Y, %B") . .split (', ")

59 daysBack = self.accum.get ('daysBack') [0]

60 self.accum.set ('title', '{0} Day Precipitation Total Ending {1/3]}
~{1[0]}, (1[2])".format (

61 int (daysBack), endDateFmt))

62 begDate = endDate - datetime.timedelta (int (self.accum.get ('daysBack
") [0]) - 1)

63 begDateFmt = begDate.strftime('2d, %m') .split (', ")

64 self.accum.set ('outfile', 'accum{O0[I1]}{0[0]}—{ J}{1[0]}{1
—format (

65 begDateFmt, endDateFmt))

66

67 def go(self):

68 """ get current selected page and make map """

69 run = self.dialog.get ('notebook’") # get selected tab,,
—number

70 mapper = Mapper (self) # create a Mapper,,

—instance using the Gui

71

—self
72 try:
73 if run == 'Routine':
74 mapper.runRoutine ()
75 elif run == 'Accumulate':

f'{today.month///

210071
Ending Date',

today.day// {today.year /")

instance which 1is_,

(continues on next page)

18

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

(continued from previous page)

mapper.runAccum()
except:
self.dialog.set ('messages', self.dialog.catchExcept())

class Mapper:
"mrm contain all GIS methods """

def _ _init__ (self, gui):
"o create Mapper instance
mmn

gui: Gui object
self.gul = gui

def runRoutine (self):
""" make the routine precipitation maps
title = self.gui.routine.get ('title’)
filename = self.gui.routine.get ('outfile')
self.gui.dialog.set ('messages', f'Making {filename/.\n'")

mmn

magic map making code goes here

def runAccum(self):
""" make the accumulate precipitation map
title = self.gui.accum.get ('title’")
filename = self.gui.accum.get ('outfile')
self.gui.dialog.set ('messages', f'Making {filename/.\n'")

mon

magic map making code goes here

def main () :
gui = Gui() # create a Gui instance and pass Mapper class to it
gui.dialog.waitforUser ()

if name == main '

main ()

Here are the line explanations:

1.

12.

Import datetime for automatic date functions

. Import Window from tkintertoy.
. Blank line.
. Create a class called Gui. This will contain the code dealing with the interface.

2
3
4
5.
6
7
8

Class documentation string.

. Create an initialize method that will create the interface. All methods in the class will have access to self.
. This is the method documentation string.

. Create an instance of Window that will be asignned to an attribute dialog. All methods in this class will have

access.

. Set the title of the window to Mapper 1.0.
10.
11.

This code section is for the notebook widget.

Create a list which contains the names of the tabs in the notebook: ‘Routine’ & ‘Accumulate’. ‘Routine’ will
make a map of one day’s rainfall, ‘Accumulate’ will add up several days worth of rain.

Add a ttNotebook. The notebook will return two Windows in a list which will be used as a container for each
notebook page.

1.9.

Using the Notebook Container 19

Tkintertoy Documentation, Release 1.6.0

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

This code section is for the ‘Routine’ notebook page.

Assign the first page (page[0]) of the notebook, which is a Window to an attribute routine.
Get today’s date.

Convert it to [date, month, year, month abr]; ex. [24, 6, 2023, ‘Jun’]

Add a title ttEntry widget. This will be filled in dynamically and be the title of the map.
Set the title using today’s date.

Same.

Plot the title at column 0, row 0.

Add an output filename ttEntry widget. This will also filled in dynamically.

Set the output filename using today’s date.

Plot the output filename widget at column 0, row 1.

Create a list of two types of jobs: Make KMLs & Make Maps.

Add a jobs ttCheckbox.

Turn on both check boxes, by default.

Plot the jobs widget at column 0, row 2.

This code section is for the ‘Accumulate’ notebook page.

Assign the second page (page[1]) of the notebook, which is a Window to an attribute accum.
Create the list for the parameters of a date spinner.

Add an ending date ttSpinbox, with the callback set to self.update Accum().

Same.

Set the ending date to today.

Plot the ending date widget at column 0, row 0.

Add a single days back ttSpinbox with the callback set to self.updateAccum() as well.
Same.

Set the default days back to 2.

Plot the days back widget at column 0, row 1.

Add a title ttEntry. This will be filled in dynamically.

Plot the title widget at column 0, row 2.

Add an output filename ttEntry. This will be filled in dynamically.

Plot the output filename widget at column 0, row 3.

Fill in the title using the default values in the above widgets.

This section of code is for the rest of the dialog window.

Add a messages ttText. This is where all messages to the user will appear.

Plot the messages widget at column O, row 1 of the dialog window. The notebook will be at column 0, row 0.

Add a command ttButtonbox, the default are labeled Ok and Cancel.

20

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

48.

49.

Set the callback for the first button to the go method. We are changing the command parameter. This shows how
easy it is to get to the more complex parts of Tk/ttk from tkintertoy. The setWidget allows the programmer
to change any of the tk/ttk options after the widget is created.

Set the label of the second button to Exit using the same method as above but changing the fext parameter.
This shows how options of buttons can be dynamic.

50. Plot the command buttons at column 0, row 2.

51. Plot the notebook at column 0, row 0.

52. Set the default notebook page to ‘Routine’. This will be the page displayed when the application first starts.
Note that set and get use the notebook tab names.

53. Blank line.

54. This method will update the widgets on the ‘Accumulate’ tab.

55. This is the method documentation string.

56. Get the ending date from the widget. This is an example of a use of a list comprehension. The get method will
return a date string. The split method will return a list of str, and the list comprehension convert the values
to ints. The result will be [month, day, year].

57. This will turn the list of ints into a datetime object.

58. Turn the object into a comma-separated string ‘date-int, month-int, year, month-abrev’ like 24,6,2023,Jun’.

59. Get the number of days back the user wanted.

60. Set the title of the map in the title widget. As the user changes the dates and days back, this title will dynamically
change. The user can edit this one last time before they click on ‘Ok’.

61. Calculate the beginning date from the ending date and the days back.

62. Convert the datetime into a list of strings [‘date-int’,’ month-int’] like [‘22’,'6’].

63. Same.

64. Set the title of the map file to something like ‘accum06022-06242023°. Again, this will be dynamically updated
and can be overridden. Notice that one method is updating two widgets.

65. Same.

66. Blank line.

67. This method will execute the correct the map generation code.

68. This is the method documentation string.

69. Get the selected notebook tab name.

70. Create an instance of a Mapper object. However, we have a chicken/egg type problem. Mapper must know
about the Gui instance in order to send messages to the user. That is why the Mapper instance must be created
after the Gui instance. However, the Gui instance must also know about the Mapper instance in order to execute
the map making code. That is why the Mapper instance is created inside of this method. The Gui instance self
is used as an argument to the Mapper initialization method. It looks funny but it works.

71. Blank line.

72. This code might fail so we place it in a try. .. except block.

73. If the current tab is ‘Routine’. ..

74. Run the routine map generation code.

75. If the current tab is ‘Accumulate’. ..

1.9. Using the Notebook Container 21

Tkintertoy Documentation, Release 1.6.0

76.
7.
78.
79.
80.

81.
82.
83.

84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.

96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.

Run the accumulated map generation code.

Catch any exceptions.

Place all error messages into the messages widget. Any error messages will pop-up in a window.
Blank line.

Create a Mapper class which contains all the map generation code. This will be a stud here since map genera-
tion code is well beyond the scope of this tutorial.

Class documentation line.
Blank line.

Create an initialize method that will contain all the map making methods. For this example, this will be mainly
stubs since actual GIS code is well beyond the scope of this tutorial.

Method documentation lines.

Same.

Make the Gui object an attribute of the instance so all methods have access.
Blank line.

This method contains the code for making the routine daily precipitation map.
Method documentation line.

Get the desired map title. This will be used in the magic map making code section.
Get the filename of the map.

Send a message to the user that the magic map making has begun.

This is well beyond the scope of this tutorial.

Blank line.

This method contains the code for making accumulated precipitation maps, that is, precipitation that fell over
several days.

Method documentation line.

Get the desired map title. This will be used in the magic map making code section.
Get the filename of the map.

Send a message to the user that the magic map making has begun.

This is well beyond the scope of this tutorial.

Blank line.

The main function.

Create the GUL

Run the GUL

Blank line.

Standard Python. If you are executing this code from the command line, execute the main function. If importing,
don’t.

22

Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

1.10 Object-Oriented Style Using Inheritance

This example gets away from map maiking and is a demonstation of writting in an object-oriented style using inheri-
tance. This is the style most textbooks will use when explaining GUI creation. Inheritance means that the application
window will inherit all the features of a Tkintertoy Window. So instead of refering to the tkintertoy window in the
class as self.gui you would use just self. Think of composition as the application #as a Window and inheritance as the
application is a Window.

The example below is a pizza ordering system. It demostates several ttwidgets: ttEntry, ttRadiobox, ttCombobox,
ttLine, two ttCheckboxes with the indicator off and on, ttListbox, ttText, and several ttButtons.

This application works as follows. The user first fills in the customer’s name in the entry and how they are going to get
their pizzas in a radio button group with the indicator on. Next, for every pizza, the user selects a size using a combo
and crest type using a radio group with the indicator off. Next, they click on the the toppings the customer asked for
using a scrolling list. Now, the user add extra cheese or extra sauce of both using a check group. Once the order for
the pizza is complete, the user clicks on the Add to Order button. This sends the pizza order to the text box and
clears the pizza option widgets, making ready to enter the next pizza. When all the pizzas are entered. The user clicks
on Print Order, which here just prints the user’s name, their delivery method, and their pizzas on the terminal. In
real life this information would go to another system.

Below is a screenshot:

1.10. Object-Oriented Style Using Inheritance 23

Tkintertoy Documentation, Release 1.6.0

Customer Mame Order Type
Joe Smith () Dine In © Pickup () Delivery
rCrust
Size I Thin
Large - Hand tossed
Deep dish
Toppings
Pepperoni &
Sausage
Mushrooms .
Extra toppings
Green Peppers] Extra Cheese
Black Olives @ Extra Sauce
Jalapano Peppers
v
Add to Order
Order Surmmary
Medium : Thin -

Pepperoni, Sausage, Mushrooms

Large - Hand tossed
Sausage, Bacaon, Green Peppers, Bannana Peppers
Extra Cheese
Large : Thin
Pepperoni, Sausage, Mushrooms, Green Peppers, Black Qlives, Jalapano Peppers
Extra Sauce

Print Order Exit

Here is the code. We will also demonstrate to the set and get the contents of more widgets and introduce some simple
error trapping:

1 |from tkintertoy import Window

2

3 |class PizzaGui (Window) :

4 """ Create a pizza ordering GUI """

5

6 def _ init__ (self):

7 "mm Create an instance of PizzaGui """
8 super () .__init__ ()

9

10 def makeGui (self):

(continues on next page)

24 Chapter 1. Tkintertoy 1.6 Tutorial

Tkintertoy Documentation, Release 1.6.0

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

(continued from previous page)

mmn Make the GUI mmn
self.setTitle('Pizza Order')
toppings = ('Pepperoni', 'Sausage', 'Mushrooms', 'Bacon', 'Green Peppers

'Black Olives', 'Bannana Peppers', 'Jalapano Peppers')

crusts = ('Thin', 'Hand tossed', 'Deep dish')

orderType = ('Dine In', 'Pickup', 'Delivery')

extras = ('Extra Cheese', 'Extra Sauce')

sizes = ('Personal', 'Small', 'Medium', 'Large', 'Extra Large')
command = [('Print Order', self.printOrder), ('Exit',self.cancel)]

self.addEntry('name', 'Customer Name', width=40)
self.addRadio('type', 'Order Type', orderType)
self.addLine ('line")

self.addCombo ('size', 'Size', sizes)
self.addRadio('crust', 'Crust', crusts, usetk=True,

—indicatoron=False,

def

def

def

width=12, orient='vertical')
self.addList ('toppings', 'Toppings', toppings, selectmode='multiple')
self.addCheck ('extras', 'Extra toppings', extras, orient='vertical')
self.addButton('addpizza', '', [('Add to Order', self.addOrder)],
width=15)
self.addText ('summary', 'Order Summary', width=100, height=20)
self.addButton ('command','', command, width=15)

7
'extras', 1, 3, pady=b5)
self.plotxy('addpizza', 0, 4, columnspan=2, pady=10)
self.plotxy ('summary', 0, 5, columnspan=2, pady=5)
self.plotxy ('command', 0, 6, columnspan=2, pady=10)
self.set('size', 'Medium')

self.plotxy

self.plotxy('name', 0, 0, pady=5)
self.plotxy('type', 1, 0, pady=5)
self.plotxy('line', 0, 1, columnspan=2, pady=10, sticky='we')
self.plotxy('size', 0, 2, pady=5)
self.plotxy('crust', 1, 2, pady=5)
self.plotxy ('toppings', 0, 3, pady=5)
(
(
(

addOrder (self) :

"mro Collect the widgets and add a pizza to the order """
order = self.get('size') + ' : ' + self.get('crust')+'\n"
toppings = ', '.join(self.get ('toppings'))

order += ' ' + toppings+'\n'

extras = ', '.join(self.get ('extras'))

order += ' ' + extras + '\n'

self.set ('summary', order)
self.clearPizza()

printOrder (self) :

"mr print the order to the console """

summary = self.get('name') + ' : ' + self.get('type') + '\n'
order = self.get ('summary')

self.popMessage (order, 'showinfo', 'Order')
self.clearPizza ()

self.set ('name', "")

self.reset ('type')

self.set ('summary', '', allValues=True)

clearPizza(self):
mmwn Cle